Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.763
Filter
1.
Angew Chem Int Ed Engl ; : e202405679, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771671

ABSTRACT

An optimal cancer chemotherapy regimen should effectively address the drug resistance of tumors while eliciting antitumor-immune responses. Research has shown that non-apoptotic cell death, such as pyroptosis and ferroptosis, can enhance the immune response. Despite this, there has been limited investigation and reporting on the mechanisms of oncosis and its correlation with immune response. Herein, we designed and synthesized a Ru(II) complex that targeted the nucleus and mitochondria to induce cell oncosis. Briefly, the Ru(II) complex disrupts the nucleus and mitochondria DNA, which active polyADP-ribose polymerase 1, accompanied by ATP consumption and porimin activation. Concurrently, mitochondrial damage and endoplasmic reticulum stress result in the release of Ca2+ ions and increased expression of Calpain 1. Subsequently, specific pore proteins porimin and Calpain 1 promote cristae destruction or vacuolation, ultimately leading to cell membrane rupture. The analysis of RNA sequencing demonstrates that Ru(II) complex can initiate the oncosis-associated pathway and activate both innate and adaptive immunity. In vivo experiments have confirmed that oncosis facilitates the maturation of dendritic cells and the awakening of adaptive cytotoxic T lymphocytes but also induces the polarization of tumor-associated macrophages (TAMs) towards an M1 phenotype and activates the innate immune response of TAMs.

2.
J Environ Manage ; 360: 121198, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38772239

ABSTRACT

Nitrogen dioxide (NO2) is a major air pollutant primarily emitted from traffic and industrial activities, posing health risks. However, current air pollution models often underestimate exposure risks by neglecting the bimodal pattern of NO2 levels throughout the day. This study aimed to address this gap by developing ensemble mixed spatial models (EMSM) using geo-artificial intelligence (Geo-AI) to examine the spatial and temporal variations of NO2 concentrations at a high resolution of 50m. These EMSMs integrated spatial modelling methods, including kriging, land use regression, machine learning, and ensemble learning. The models utilized 26 years of observed NO2 measurements, meteorological parameters, geospatial layers, and social and season-dependent variables as representative of emission sources. Separate models were developed for daytime and nighttime periods, which achieved high reliability with adjusted R2 values of 0.92 and 0.93, respectively. The study revealed that mean NO2 concentrations were significantly higher at nighttime (9.60 ppb) compared to daytime (5.61 ppb). Additionally, winter exhibited the highest NO2 levels regardless of time period. The developed EMSMs were utilized to generate maps illustrating NO2 levels pre and during COVID restrictions in Taiwan. These findings could aid epidemiological research on exposure risks and support policy-making and environmental planning initiatives.

3.
Sci Total Environ ; : 173285, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38772488

ABSTRACT

Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.

4.
Funct Integr Genomics ; 24(3): 108, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773054

ABSTRACT

Sulfate transporter (SULTR) proteins are in charge of the transport and absorption on sulfate substances, and have been reported to play vital roles in the biological processes of plant growth and stress response. However, there were few reports of genome-wide identification and expression-pattern analysis of SULTRs in Hibiscus mutabilis. Gossypium genus is a ideal model for studying the allopolyploidy, therefore two diploid species (G. raimondii and G. arboreum) and two tetraploid species (G. hirsutum and G. barbadense) were chosen in this study to perform bioinformatic analyses, identifying 18, 18, 35, and 35 SULTR members, respectively. All the 106 cotton SULTR genes were utilized to construct the phylogenetic tree together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 8 Zea mays ones, which was divided into Group1-Group4. The clustering analyses of gene structures and 10 conserved motifs among the cotton SULTR genes showed the consistent evolutionary relationship with the phylogenetic tree, and the results of gene-duplication identification among the four representative Gossypium species indicated that genome-wide or segment duplication might make main contributions to the expansion of SULTR gene family in cotton. Having conducted the cis-regulatory element analysis in promoter region, we noticed that the existing salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) elements could have influences with expression levels of cotton SULTR genes. The expression patterns of GhSULTR genes were also investigated on the 7 different tissues or organs and the developing ovules and fibers, most of which were highly expressed in root, stem, sepal, receptacel, ovule at 10 DPA, and fiber at 20 and 25 DPA. In addition, more active regulatory were observed in GhSULTR genes responding to multiple abiotic stresses, and 12 highly expressed genes showed the similar expression patterns in the quantitative Real-time PCR experiments under cold, heat, salt, and drought treatments. These findings broaden our insight into the evolutionary relationships and expression patterns of the SULTR gene family in cotton, and provide the valuable information for further screening the vital candidate genes on trait improvement.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Phylogeny , Plant Proteins , Stress, Physiological , Gossypium/genetics , Gossypium/growth & development , Gossypium/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Genome, Plant , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism
5.
J Am Chem Soc ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773696

ABSTRACT

Electrosynthesis has emerged as an enticing solution for hydrogen peroxide (H2O2) production. However, efficient H2O2 generation encounters challenges related to the robust gas-liquid-solid interface within electrochemical reactors. In this work, we introduce an effective hydrophobic coating modified by iron (Fe) sites to optimize the reaction microenvironment. This modification aims to mitigate radical corrosion through Fe(II)/Fe(III) redox chemistry, reinforcing the reaction microenvironment at the three-phase interface. Consequently, we achieved a remarkable yield of up to 336.1 mmol h-1 with sustained catalyst operation for an extensive duration of 230 h at 200 mA cm-2 without causing damage to the reaction interface. Additionally, the Faradaic efficiency of H2O2 exceeded 90% across a broad range of test current densities. This surface redox chemistry approach for manipulating the reaction microenvironment not only advances long-term H2O2 electrosynthesis but also holds promise for other gas-starvation electrochemical reactions.

6.
Food Funct ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775706

ABSTRACT

Background: The escalating prevalence of hyperuricemia is emerging as a significant public health concern. The association between dietary lignans and hyperuricemia is yet to be fully elucidated. Our study aims to evaluate the relationships between dietary lignan intake and hyperuricemia among middle-aged and elderly Chinese individuals, with an additional focus on investigating the underlying mechanisms. Methods: Dietary lignan intake was measured using a validated Food Frequency Questionnaire in 3801 participants at the baseline. Among them, 2552 participants were included in the longitudinal study with a median follow-up of 10.5 years. The gut microbiota was analyzed by shotgun metagenome sequencing in 1789 participants, and the targeted fecal metabolome was determined in 987 participants using UPLC-MS/MS at the midpoint of follow-up. Results: The multivariable-adjusted HRs (95% CIs) for hyperuricemia incidence in the highest quartile (vs. the lowest quartile) of dietary intake of total lignans, matairesinol, pinoresinol, and secoisolariciresinol were 0.93 (0.78-1.10), 0.77 (0.66-0.90), 0.83 (0.70-0.97), and 0.85 (0.73-1.00), respectively. The gut microbial and fecal metabolic compositions were significantly different across the dietary lignan groups and the hyperuricemia groups. The beneficial associations between dietary lignans and hyperuricemia might be mediated by several gut microbes (e.g., Fusobacterium mortiferum and Blautia sp. CAG-257) and the downstream bile acid products (e.g., NorCA, glycochenodeoxycholic acid, and glycoursodeoxycholic acid). Conclusion: We found that dietary lignans were inversely associated with hyperuricemia incidence, and the gut microbiota-bile acid axis might mediate this association. Our findings provide new perspectives on precise therapeutic targets and underlying mechanisms for conditions associated with elevated uric acid.

7.
Int J Lab Hematol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775786

ABSTRACT

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma, which caused many patients to lose their precious lives. FOXO3 was a suppressor in various cancers, however, the role and mechanism of FOXO3 in DLBCL remain unclear. METHODS: Bioinformatics analysis was used to offer information FOXO3 expression and its expression for prognosis of DLBCL patients. The abundance of genes and proteins was evaluated using RT-qPCR and western blot. Cell proliferation and apoptosis was detected by CCK-8 and flow cytometry. The interactions among FOXO3, miR-34b, and HSPG2 were predicted by TransmiR and Starbase and validated using dual luciferase reporter assay, ChIP assay, and RIP assay. RESULTS: Our findings revealed that FOXO3 expression was abnormally declined in DLBCL cells. FOXO3 upregulation restrained cell proliferation and promoted cell apoptosis of DLBCL cells, while miR-34b inhibitor eliminated these influences. Similarly, miR-34b mimic suppressed malignant behaviors of DLBCL cells, which were abolished by HSPG2 overexpression. Mechanically, FOXO3 induced miR-34b expression through interacting with miR-34b promoter and HSPG2 was a targeted gene of miR-34b. CONCLUSION: FOXO3 attenuated the capability of cell proliferation and promoted cell apoptosis rate of DLBCL cells through affecting miR-34b/HSPG2 axis, therefore inhibiting DLBCL progression.

8.
Int J Gen Med ; 17: 1807-1822, 2024.
Article in English | MEDLINE | ID: mdl-38720819

ABSTRACT

Purpose: Glycated hemoglobin (HbA1c) is widely used in diabetes management and now recommended for diagnosis and risk assessment. Our research focused on investigating the optimal cutoff points of HbA1c for diagnosis of diabetes and prediabetes in Chinese breast cancer women, aiming to enhance early detection and tailor treatment strategies. Patients and Methods: This study involved 309 breast cancer women without diabetes history in China. Patients were categorized into groups of newly diagnosed diabetes, prediabetes, and normal glucose tolerance using oral glucose tolerance test (OGTT) according to the 2010 ADA criteria. HbA1c data were collected from all patients. Receiver operating characteristic (ROC) curve analysis was used to assess the effectiveness of the HbA1c screening. Results: Among the 309 breast cancer women without diabetes history, 96 (31.0%) were identified with diabetes and 130 (42.1%) had prediabetes according to OGTT, and the incidence of normal glucose tolerance was only 26.9% (83). ROC curve analysis, using OGTT as a reference, revealed that the area under the curve of 0.903 (P<0.001, 95% CI, 0.867-0.938) for HbA1c alone, indicating high accuracy. The optimal HbA1c cutoff for identifying diabetes was determined to be 6.0%, with a sensitivity of 78.1% and specificity of 86.4%. For prediabetes, the ROC curve for HbA1c alone showed that the area under the ROC curve of 0.703 (P<0.001, 95% CI, 0.632-0.774), with an optimal cutoff of 5.5% (sensitivity of 76.9% and specificity of 51.8%). Conclusion: The prevalence of undiagnosed diabetes is very high in breast cancer women without diabetes history in China. The optimal cutoff points of HbA1c for identifying diabetes and prediabetes are 6.0% and 5.5% in Chinese breast cancer women, respectively.

10.
Front Psychiatry ; 15: 1339558, 2024.
Article in English | MEDLINE | ID: mdl-38721616

ABSTRACT

Introduction: Patients with alcohol use disorder (AUD) often experience repeated withdrawal. Impulsivity is the most relevant factor influencing successful withdrawal. Brain-derived neurotrophic factor (BNDF) and fibroblast growth factor 21 (FGF21) are associated with impulsivity. Previous studies on the differential effects of BDNF or FGF21 on impulsivity have focused on single-gene effects and have inconsistent results. We aim to investigate the effects of BDNF rs6265 and FGF21 rs11665896, individually and together, on impulsivity during alcohol withdrawal in patients with AUD. Methods: We recruited 482 adult Han Chinese males with AUD and assessed their impulsivity using the Barratt Impulsivity Scale. Genomic DNA was extracted and genotyped from peripheral blood samples. Statistical analysis was conducted on the data. Results: The T-test and 2 × 2 analysis of variance were used to investigate the effects of the genes on impulsivity. There was a significant BDNF × FGF21 interaction on no-planning impulsiveness (F = 9.15, p = 0.003, η2p = 0.03). Simple main effects analyses and planned comparisons showed that BDNF rs6265 A allele × FGF21 rs11665896 T allele was associated with higher no-planning impulsiveness. Finally, hierarchical regression analyses revealed that only the interaction of BDNF and FGF21 accounted for a significant portion of the variance in no-planning impulsiveness. Conclusion and significance: The combination of BDNF rs6265 A allele and FGF21 rs11665896 T allele may increase impulsivity and discourage alcohol withdrawal. Our study provides a possible genetic explanation for the effects of associated impulsivity in patients with AUD from the perspective of gene-gene interactions.

12.
J Plast Reconstr Aesthet Surg ; 93: 261-268, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38723512

ABSTRACT

BACKGROUND: The aim of palatoplasty is to create a functional palate to achieve normal speech, while minimizing post-operative complications. This study aimed to compare the long-term outcomes of modified Furlow palatoplasty using small double-opposing Z-plasty (small-DOZ) and conventional Furlow palatoplasty (conventional-DOZ) performed in a single center. METHODS: A retrospective review of consecutive patients who underwent Furlow palatoplasty between May 2007 and March 2014 was executed. Non-syndromic patients subjected to palatoplasty prior to 24 months of age and followed-up until at least 9 years of age were included. RESULTS: A total of 196 small-DOZ and 280 conventional-DOZ palatoplasty patients were included in this study. Overall, 14 patients (2.9%) developed oronasal fistula, and 40 patients (8.4%) received velopharyngeal insufficiency (VPI) surgery. In comparisons, oronasal fistula rate was significantly higher in conventional-DOZ (0.5% vs. 4.6%, p = 0.01), and the VPI prevalence was not significantly different (9.2% vs. 7.9%, p = 0.62). Patients who developed fistula had a significantly higher likelihood of developing VPI than patients without oronasal fistula (50.0% vs. 7.1%, respectively; p < 0.01), with an odds ratio of 13.0. CONCLUSION: Both modalities of palatoplasty yielded commendable velopharyngeal function in the long-term follow-up. The small-DOZ with reduced tension lowered the risk of oronasal fistula.

13.
Article in English | MEDLINE | ID: mdl-38725327

ABSTRACT

BACKGROUND AND AIM: This study estimated the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) according to cardiometabolic risk factors. The long-term impacts of MASLD on all-cause and cardiometabolic-specific mortality were evaluated. METHODS: We enrolled 343 816 adults aged ≥30 years who participated in a health screening program from 1997 through 2013. MASLD was identified on the basis of abdominal ultrasonography and metabolic profiles. The participants were further categorized by liver enzyme elevation. Baseline cardiometabolic comorbidities were classified on the basis of self-reported medication use and clinical seromarkers. All-cause and cardiometabolic-specific deaths were determined through computerized data linkage with nationwide death certifications until December 31, 2020. RESULTS: The overall prevalence of MASLD was 36.4%. Among patients with MASLD, 35.9% had abnormal liver enzyme levels. Compared with patients without MASLD, abnormal liver enzymes were positively associated with cardiometabolic comorbidities in patients with MASLD (Pfor trend < 0.001). After follow-up, patients with MASLD had a 9%-29% higher risk of all-cause, cardiovascular-related, or diabetes-related mortality. In the groups with MASLD and elevated and normal liver enzyme levels, the multivariate-adjusted hazard ratios for cardiovascular deaths were 1.14 (1.05-1.25) and 1.10 (1.03-1.17), respectively, and those for diabetes deaths were 1.42 (1.05-1.93) and 1.24 (0.98-1.57), respectively, compared with those in the non-MASLD group (Pfor trend < 0.001). DISCUSSION: Individuals with MASLD and elevated liver enzyme levels exhibited significantly higher risks of all-cause and cardiometabolic deaths and should be monitored and given consultation on cardiometabolic modifications.

14.
Anal Chem ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726669

ABSTRACT

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.

15.
Emerg Microbes Infect ; : 2353302, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753462

ABSTRACT

Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR-Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3×105 PFU) or low (2.5×102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by all variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.

16.
Article in English | MEDLINE | ID: mdl-38754100

ABSTRACT

OBJECTIVES: To evaluate the efficacy of a multimodal preemptive analgesia management approach, specifically incorporating ultrasound-guided thoracic paravertebral block (UG-TPVB) in conjunction with intravenous analgesia, after video-assisted thoracoscopic (VATS) lobectomy under the guidance of Enhanced Recovery After Surgery (ERAS). METHODS: A total of 690 patients who underwent VATS lobectomy between October 2021 and March 2022 were divided into the UG-TPVB group (group T, n = 345) and control group (group C, n = 345). Patients in group T received UG-TPVB prior to the induction of general anaesthesia, while group C did not undergo nerve block. A comparison was conducted between the two groups regarding various indicators, including postoperative sedation, static/dynamic numeric rating scale (NRS) scores, intraoperative fentanyl consumption, duration of mechanical ventilation/anaesthesia recovery/hospitalization, postoperative complications, and other relevant factors. RESULTS: The static/dynamic NRS scores of group T were lower than those of group C after surgery. Intraoperative fentanyl consumption in group T (0.384 ± 0.095 mg) was lower than that in group C (0.465 ± 0.053 mg). The duration of mechanical ventilation, anaesthesia recovery, and hospitalization were significantly shorter in group T compared to group C. Patient satisfaction rate in group T (70.1%) was higher than that in group C (53.6%). All differences were statistically significant (P < 0.05). CONCLUSIONS: The multimodal preemptive analgesia management strategy effectively reduces postoperative pain, decreases opioid consumption, and promotes faster recovery in patients undergoing VATS lobectomy.

17.
Int J Biol Macromol ; : 132412, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754674

ABSTRACT

Acute myocardial infarction (AMI) causes acute cardiac cell death when oxygen supply is disrupted. Improving oxygen flow to the damaged area could potentially achieve the to prevent cell death and provide cardiac regeneration. Here, we describe the production of oxygen-producing injectable bio-macromolecular hydrogels from natural polymeric components including gelatin methacryloyl (GelMA), hyaluronic acid (HA) loaded with catalase (CAT). Under hypoxic conditions, the O2-generating hydrogels (O2 (+) hydrogel) encapsulated with Mesenchymal stem cells (MSCs)-derived-exosomes (Exo- O2 (+) hydrogel) released substantial amounts of oxygen for >5 days. We demonstrated that after 7 days of in vitro cell culture, exhibits identical production of paracrine factors compared to those of culture of rat cardiac fibroblasts (RCFs), rat neonatal cardiomyocytes (RNCs) and Human Umbilical Vein Endothelial Cells (HUVECs), demonstrating its ability to replicate the natural architecture and function of capillaries. Four weeks after treatment with Exo-O2 (+) hydrogel, cardiomyocytes in the peri-infarct area of an in vivo rat model of AMI displayed substantial mitotic activity. In contrast with infarcted hearts treated with O2 (-) hydrogel, Exo- O2 (+) hydrogel infarcted hearts showed a considerable increase in myocardial capillary density. The outstanding therapeutic advantages and quick, easy fabrication of Exo- O2 (+) hydrogel has provided promise favourably for potential cardiac treatment applications.

18.
Anal Chem ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755966

ABSTRACT

Nanogap-based plasmonic metal nanocrystals have been applied in surface-enhanced Raman scattering detection, while the closed and insufficient electromagnetic fields as well as the nonreproducible Raman signal of the substrate greatly restrict the actual application. Herein, a highly uniform Au/AgAu monolayer with abundant nanogaps and huge electromagnetic enhancement is prepared, which shows ultrasensitive and reproducible SERS detection. Au/AgAu with an inner nanogap is first prepared based on Au nanotriangles, and the nanogap is opened from the three tips via a subsequent etching process. The open-gap Au/AgAu displays much higher SERS efficiency than Au and Au/AgAu with an inner nanogap on detecting crystal violet due to the open-gap induced electromagnetic enhancement and improved molecular absorption. Furthermore, the open-gap Au/AgAu monolayer is prepared via interfacial self-assembly, which shows further improved SERS due to the dense and strong hotspots in the nanocavities induced by the electromagnetic coupling between adjacent open gaps. The monolayer possesses excellent signal stability, uniformity, and reproducibility. The analytic enhancement factor and relative standard deviation reach to 2.12 × 108 and 4.65% on detecting crystal violet, respectively. Moreover, the monolayer achieves efficient detection of thiram in apple juice, biphenyl-4-thiol, 4-mercaptobenzoic, melamine, and a mixed solution of four different molecules, showing great promise in practical detection.

19.
Heliyon ; 10(9): e29914, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737285

ABSTRACT

This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.

20.
J Cancer ; 15(10): 2948-2959, 2024.
Article in English | MEDLINE | ID: mdl-38706893

ABSTRACT

Background: Uterine Corpus Endometrial Carcinoma (UCEC) is the most common type of cancer that develops in the uterus, specifically originating from the endometrium, the inner lining of the uterus. Programmed cell death (PCD) is a highly regulated process that eliminates damaged, aged, or unwanted cells in the body. Dysregulation of PCD pathways can contribute to the formation and progression of various cancers, including UCEC. Methods: Fourteen PCD pathways (autophagy-dependent cell death, alkaliptosis, apoptosis, cuproptosis, entotic cell death, ferroptosis, immunogenic cell death, lysosome-dependent cell death, MPT-driven necrosis, necroptosis, netotic cell death, oxeiptosis, parthanatos, and pyroptosis) were involved in building a prognostic signature. The model was trained and tested using data from the TCGA-UCEC and validated with the GSE119041 dataset. Results: A 12-gene PCD signature (DRAM1, ELAPOR1, MAPT, TRIM58, UCHL1, CDKN2A, CYFIP2, AKT2, LINC00618, TTPA, TRIM46, and NOS2) was established and validated in an independent dataset. UCEC patients with a high PCD score (PCDS) exhibited worse prognosis. Furthermore, PCDS was found to be associated with immune related cells and key tumor microenvironment components through multiple methods. It was observed that UCEC patients with a high PCD score may not benefit from immunotherapy, but some chemo drugs like Bortezomib may be useful. Conclusion: In conclusion, a novel PCD model was established by comprehensively analyzing diverse cell death patterns. This model accurately predicts the clinical prognosis and drug sensitivity of UCEC. The findings suggest that the PCD signature can serve as a valuable tool in assessing prognosis and guiding treatment decisions for UCEC patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...